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PREFACE 

 
 
This document is the final report of the research conducted in accordance to 
the contract AOARD-06-4025. The project has been completed on May 1, 
2007 as per the official contract. The draft of the final report is also completed 
by May 2007. The document contains the narration of the original problem, a 
technical description of the state-of-the-art as well as specific technical work 
conducted for this purpose. During the course of the research, intermediate 
versions of the code were dispatched to Prof. Guna Seetharaman, AFIT/ENG, 
who facilitated the testing on AFRL provided datasets and provided feedback. 
The final version of the code is being delivered along with this report. Also, the 
latest code and the results of the feasibility studies are being sent to the 
AFRL/ML collaborators. Dr. Seetharaman also visited IIT Bombay during April 
16-30, 2007 on a related research mission and had an opportunity to verify 
and be trained on using the developed computer programs. 
 
The contract was to investigate the feasibility of super resolution imaging of 
large surfaces at nano-scale resolution. Four different techniques were 
considered for this study, and the computational results indicate a promising 
performance with a peak PSNR gain of 6 db over standard bilinear 
interpolation.  In some cases, even a scale factor of 4 produced reliable 
results.  Specifically the effort included: (1) a thorough survey of the state of 
the art, (2) data collected by US collaborators and analyzed by the 
investigator, (3) development of Papoulis-Gerchberg method to implement the 
analytic continuation of spectral details, (4) exploration of contourlet and its 
variant known as the Laplacian Edge model.  Additionally, we developed a 
new technique for super resolution of material images known as total variation 
optimized image interpolation.   The deliverance of this report serves to meet 
the fifth objective of the original contract. 
 
 
 

 
Place: Mumbai                                   
Date: May 1, 2007 
                                                                                 (Subhasis Chaudhuri) 
                    Principal Investigator 
 
Encl: Full report 
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1. Introduction: 
In most imaging applications, images with high spatial resolution are desired and 

often required. However acquisition of high-resolution images is severely constrained 

by the physical drawbacks of the diffraction limited imaging sensors. The images 

acquired through such sensors suffer from aliasing and blurring. The most direct 

solution to increase the spatial resolution is to increase the number of pixels per unit 

area, by sensor manufacturing techniques. But due to decrease in pixel size, light 

available also decreases causing more shot noise. Another approach to increase the 

resolution is to increase the wafer size, which leads to an increase in the 

capacitance. This approach is not effective since an increase in the capacitance 

causes a decrease in charge transfer rate. Hence, a promising approach is to use 

image processing methods to construct a high-resolution image from one or more 

available low-resolution observations. 

Super-resolution refers to the process of producing a high spatial resolution image 

than what is afforded by the physical sensor through post processing means. It 

includes up sampling the image, thereby increasing the maximum spatial frequency, 

and removing degradations that arise during the image capture, viz., aliasing and 

blurring. 

 
2. Literature Review: 
Numerous reconstruction-based super-resolution algorithms have been proposed in 

the literature. The idea of super-resolution was first proposed by Tsai and Huang, 

which used the frequency domain approach [1]. A different approach to the super-

resolution restoration problem was suggested by Irani et al [2], [3] based on the 

iterative back projection method. A set theoretic approach to the super-resolution 

restoration problem was suggested in [4]. The main result there is to define convex 

sets which represent tight constraints on the solution to improve the results. Ng et al 

developed a regularized, constrained total least squares solution to obtain a high-

resolution image [5]. They consider the presence of perturbation errors of 

displacements around the ideal sub-pixel locations in addition to noisy observations. 

The effect of the displacement errors on the convergence rate of an iterative 

approach for solving the transform based preconditioned system of equations is 

discussed by Ng and Bose [6]. They also develop a fast restoration algorithm for 

color images in [7]. Nguyen proposed circulant block preconditioners to accelerate 

the conjugate gradient descent method while solving the Tikhonov-regularized super-

resolution problem [8]. A maximum a posteriori (MAP) estimator with Huber-Markov 
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random field (MRF) prior is described by Schultz and Stevenson in [9]. Other 

approaches include a MAP-MRF based super-resolution technique using the blur as 

a cue [10]. In [11] the authors recovered both the high-resolution scene intensity and 

the depth fields simultaneously using the defocus cue. Elad and Feuer [12] proposed 

a unified methodology for super-resolution restoration from several geometrically 

warped, blurred, noisy and down-sampled measured images by combining maximum 

likelihood (ML), MAP and projection onto convex sets (POCS) approaches. In [13] 

Lin and Shum determine the quantitative limits of reconstruction-based super-

resolution algorithms and obtain the up-sampling limits from the conditioning analysis 

of the coefficient matrix.  

Now we review some of the recent works under the learning-based super-resolution 

category. In [14] Baker and Kanade develop a super-resolution algorithm by 

modifying the prior term in the cost to include the results of a set of recognition 

decisions, and call it recognition-based super-resolution or hallucination. Their prior 

enforces the condition that the gradient in the super-resolved image should be equal 

to the gradient in the best matching training image. Authors in [15] have proposed a 

super-resolution technique from multiple views using learned image models making 

use of principal component analysis (PCA). Their method uses learned image 

models either to directly constrain the maximum likelihood (ML) estimate or as a prior 

for a MAP estimate. In [16] Freeman proposed a parametric Markov network to learn 

the statistics between the “scene" and the “image", as a framework for handling low 

level vision tasks, one application of which is super-resolution. An image analogy 

method applied to super-resolution is discussed in [17].  

Joshi and Chaudhuri [18] have proposed a learning-based method for image super-

resolution from zoomed observations. They model the high-resolution image as a 

Markov random field (MRF), the parameters of which are learned from the most 

zoomed observation. The learned parameters are then used to obtain a maximum a 

posteriori (MAP) estimate of the high-resolution image. 

In [19] we have proposed a single frame super-resolution algorithm using a wavelet-

based learning technique where the HR edge primitives are learned from the HR 

data set locally. An eigen face-domain super-resolution reconstruction algorithm for 

face recognition is proposed in [20]. In the face hallucination technique proposed in 

[21] the authors use both low and high resolution image databases to recover the 

high-resolution image, making use of PCA. They also add constraints to the principal 

components to reduce the nonface-like distortion. The use of PCA for image zooming 

purposes has been investigated in [22]. It has been assumed that the principal 

components remain unchanged across the scale. The method is applicable only to 
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zooming up of images of a specific class of objects such as faces or fingerprints. 

Pickup et al. [23] present a domain-specific image prior in the form of a distribution 

function based upon sampled images, and show that for certain types of super-

resolution problems, this sample-based prior gives a significant improvement over 

other common multiple-image super-resolution techniques. 

In [24] the authors have proposed a single frame image super-resolution method 

where the generation of the high-resolution image patch depends simultaneously on 

multiple nearest neighbors in the training set in a way similar to the concept of locally 

linear embedding for manifold learning. This method requires fewer training 

examples than other learning-based super-resolution methods. The super-resolution 

method proposed in [25] is the extension of a Markov-based learning algorithm, 

capable of processing an LR image with unknown degradation parameters. A 

different method for enhancing the resolution of LR facial images using an error back 

projection method based on top-down learning is proposed in [26]. Here a face is 

represented by a linear combination of prototypes of shape and texture. An image 

hallucination approach based on primal sketch priors is presented in [27]. Here a 

reconstruction constraint is also applied to further improve the quality of the 

hallucinated image.   

In [28] the super-resolution reconstruction problem is considered as a binary 

classification problem and is solved through class conditional probability estimation. 

Most of the learning-based super-resolution methods proposed above either make 

use of a database of low and high resolution training images of similar objects or use 

an appropriate smoothness constraint along with the learning prior to improve the 

results. In our method we use instead an arbitrary set of high-resolution training 

images. Also we do not use any smoothness constraint as we apply the contourlet 

transform which has the capability to capture smoothness along contours, while 

learning the best edge primitives from the HR training set. The proposed method is 

edge-based and involves learning the edge pattern locally instead of the global PCA 

based approach. As a result, our method is faster and results show considerable 

improvement over a regularization-based approach. In [29] we have proposed total 

variation based regularization framework for Image super-resolution. Total variation 

based regularization helps in formulating an edge preserving scheme. This 

formulation is extended by incorporating an appropriate sub-band constraint ensures 

the preservation of textural details in trade off with noise present in the observation.  

In [30] we make use of Papoulis-Gerchberg algorithm of signal extrapolation to 

perform Image super-resolution the same algorithm is later modified to handle 

blurred image. In [31] author uses a generative model for sharp edges in images as 
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well as descriptive models for edge representation. This prior information is injected 

using the symmetric residue pyramid scheme. The advantages of this scheme are 

that it generates sharp edges with no ringing artifacts in the HR and that the models 

are universal enough to allow usage on wide variety of images without requirement of 

training and/or adaptation. 

 

 3. Methods Explored: 
We have mainly investigated learning based algorithms for obtaining the super-

resolution on scientific images. Methods implemented explore both the frequency 

domain and spatial domain. We started with learning priors for performing super 

resolution and towards the end; we also implemented super resolution in frequency 

domain. For contourlet based approaches, we have used a training database 

consisting of high resolution images. For Papoulis-Gerchberg method number of 

iterations and the filter used both govern the achievable performance of super-

resolved image at the output.  

The Super-resolution method gives good results. Here only a single low resolution 

image is used. For Edge model based high resolution image generation technique 

also, a single low resolution image is required thus, no training or high resolution 

exemplars are required. 

We have explored the following methods of super resolution in this report. 

 Wavelet based approach  

 Contourlet based approach  

 Papoulis Gerchberg algorithm  

 Edge Model based method  

 Total Variation approach  
 

3.1. Wavelet Based Approach: 
We attempt to solve the super-resolution problem using a learning based 

method. Since the problem of super-resolution involves handling data at multiple 

resolutions, and since the wavelets are best suited for a multi-resolution analysis, it 

motivates us to use a wavelet based approach for learning the wavelet coefficients at 

the finer resolution. By using a wavelet-based learning prior along with a suitable 

discontinuity preserving smoothness prior, an effective super-resolution can be 

achieved. The advantage of this method is that there is no correspondence problem. 

Further, one does not need multiple observations, but it does require a number of 

high resolution training images.  
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The method proposed here can also be classified under learning based super-

resolution schemes. However, we use a different type of learning where we use a 

prior term that enforces the condition that the wavelet coefficients of the super-

resolved image at the finest scale should be locally close to the best matching 

wavelets learnt from the high resolution training set. We obtain a regularized solution 

by imposing an appropriate smoothness constraint (on the restored image) which 

ensures the spatial correlation among the pixels while preserving the discontinuities. 

The basic problem we solve is as follows: one captures an image using a low-

resolution camera. We are interested in generating the super-resolved image for the 

same using a set of available high-resolution images of different scenes. It is 

assumed that the high frequency contents to be extrapolated are locally present in 

the training set. We use a wavelet based multi-resolution analysis to learn the 

wavelet coefficients at a given location at the finer scales for the super-resolved 

image. The learnt coefficients are then used in a prior term that enforces the 

condition that the wavelet coefficients at the finer scales of the super-resolved image 

should be locally close to the best matching coefficients learnt from the training set. 

In order to preserve the spatial continuity of the restored image, we use a 

smoothness constraint in conjunction with the learnt prior to obtain the super-

resolved image. 

 

3.1.1. Wavelet Based Learning:  
Wavelets are mathematical functions that split up data into different frequency 

components locally, and then study each component with a resolution matched to its 

scale. They have advantages over traditional Fourier transform based methods in 

analyzing physical situations where the signal contains discontinuities or a local 

analysis is required. In the case of DWT, filters of different cut off frequencies are 

employed to analyze the sequence at different scales.  

The input sequence is passed through a series of high-pass and low-pass filters to 

analyze the high and low frequency components, respectively. The filtered output is 

then sub-sampled by a factor of 2 simply by discarding every other sample. The low-

pass filter thus halves the resolution, but leaves the scale unchanged. The 

subsequent sub-sampling by a factor of 2, however, changes the scale. 
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           (a)                   (b) 

Fig. 1 Illustration of learning of wavelet coefficients at a finer scale: (a) Low resolution image 

with two level decomposition. Wavelet coefficients (marked as x) in sub-bands shown with the 

dotted lines are to be estimated for bands VII –IX. (b) high resolution training set in wavelet 

domain with 3-level decomposition. 

 

For our problem the low resolution image is of size MxM pixels (Refer Fig.1). 

Considering an up-sampling factor of 2, the high-resolution image, now has a size of 

2Mx2M pixels. For each coefficient in the sub-bands I- III and the corresponding 2x2 

blocks in the sub-bands IV-VI, we extrapolate a block of 4x4 wavelet coefficients in 

each of the sub-bands VII, VIII and IX as shown in Fig.1. We follow the minimum 

absolute difference (MAD) criterion to estimate the wavelet coefficients. We take the 

absolute difference locally between the wavelet coefficients in the low resolution 

image and the corresponding coefficients in each of the high resolution training 

images.  

 
3.1.2. Sample Results: 
We now show results of an experiment conducted on the color face images. We 

observe that the super-resolved image appears sharper, as shown in fig.2 below. 
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                       (a)               (b)              (c) 
Fig. 2(a) A low resolution face image of size MxN, (b) 2Mx2N sized bicubic interpolated Image 

of (a), (c) 2Mx2N sized super-resolved image of (a) by wavelet based technique.  

 

As shown in fig.2 (a) above a low resolution image is of size MxN is better 

reconstructed by wavelet based technique. Observe the eye balls, eye brows, frontal 

hair, and the nose shown in fig.2 (c) which appear sharper when compared to the 

bicubic interpolated image given in fig.2 (b). 

Fig. 3 shows results of an experiment conducted on an image of a building, having 

well defined vertical and horizontal edges. The super resolved image is definitely 

sharper than the bicubic-interpolated image as shown below. However, one does 

notice certain blockiness in the reconstructed images. 

 
 

 

 

 

 

 

 

   

   

                  (a)    (b)      (c)     

Fig.3.Result of wavelet based method on a sample image of a building by factor 2: (a) low 

resolution image, (b) bicubic interpolated image, (c) super-resolved image. 

 

3.1.3. Regularization of wavelet based method: 
Since we pick up the high frequency components of each 8x8 region as per 

the best-fit edge element from different training data independently, there is no 

guarantee that the corresponding high-resolution image would be a good one as it 

lacks any spatial context dependency, leading to blockiness in the resulting image. 

We must use a smoothness constraint. 
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Now, in order to enforce the smoothness constraint we make use of the fact that the 

image pixel intensities have a spatial correlation. This prior knowledge serves as a 

contextual constraint and has to be used to regularize the solution. But this constraint 

pushes the reconstruction towards a smooth entity. Hence in order to enforce 

smoothness in the smooth regions alone while up sampling, we use a discontinuity 

preserving smoothness prior. Since the high frequency details learnt by using the 

wavelet based prior constitute the discontinuities it would ensure undistorted edges in 

the super-resolved image while smoothing the regions with spatial continuity. 

The prior for the smoothness constraint in this study is: 

 

U( z)= ∑(ij) {µ[(z(ij)  - z(ij-1) )² (1-v(ij)) + (z(ij+1)  -  z(ij) )² (1-v(ij+1) ) 

                       + (z(ij)  - z(i-1,j))² (1-l(ij))+ (z{i+1,j}  -  z{i,j} )² (1-l{i+1,j} )] 

                       + ٧( l{i, j} + l{i+1,,j} + v{i,j} + v {i,j+1} )                           … (1) 

We denote the high resolution (HR) image by z.  

Here µ is the penalty term for departure from the smoothness, and l and v are the 

binary line fields denoting horizontal and vertical discontinuities. Let Zωt be wavelet 

transform of the high resolution image to be estimated and  be the wavelet 

transform of the learnt image. Then the wavelet prior can be expressed as 

wtZ
^

    C (z) = 
2^

wtwt ZZ −               … (2) 

Thus by making use of the data fitting term, the learning term and the smoothness 

constraint, the final cost function to be minimized for the high resolution image z can 

be expressed as 

                                  ε = ║ y – Dz ║² +βC (z) +U (z)              … (3) 

 

where D is the decimation matrix and y is the observed image. 

The first term relates to the consistency in data fitting. The second term gives the 

learning term and the third term gives the smoothness constraint. We minimize the 

cost by using the simulated annealing technique, which possibly leads to a global 

minimum. We illustrate the result obtained using the regularization process in 

fig.4.For better visual interpretation, we cropped eye of super-resolved tiger face. 

One does observe a sizeable improvement due to regularization. Eye of super 

resolved tiger image as shown in fig.4 (g) looks sharper than fig.4 (e).    
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Fig. 4 (a) low resolution image, (b) bicubic interpolated image and its cropped part is shown in 

(e), super-resolved by wavelet approach (without regularization) shown in (c) and its cropped 

part is shown in (f), super-resolved by wavelet (with regularization) shown in (d) and its 

cropped part is shown in (g). 

(a) (b) (c) (d) 

(e) (f) (g) 

 

However, the computation becomes extremely slow. In the next section we show that 

similar quality of results, of not any better can be obtained using contourlet transform. 

Instead of wavelet transform which does not require any regularization. Hence we do 

not pursue this method any longer for superresolving images of material surfaces 

 

3.2. Contourlet based approach 

One of the major difficulties with wavelet-based learning lies in the fact that most 

implementation employs wavelet decomposition using separable kernel along x and y 

directions. Although this provides computational advantages, we expect to catch only 

the horizontal and vertical edges properly. Hence we do not have difficulties in 

learning horizontal and vertical edges, but we do have some problem in learning 

edges oriented along arbitrary directions. This give rise to certain artifacts in the 

reconstructed image and in order to get a good quality super-resolved image we 

were forced to use an appropriate discontinuity preserving smoothness constraint 

under a regularization framework. Thus we ensure spatial correlation among pixels 

using the smoothness constraint, as well as obtain the best matching edges from the 

training set using wavelet learning. This requires a stochastic optimization technique 

to obtain the solution which made the reconstruction process very slow. 
A better way to handle the above situation is to use directionally selective wavelet 

decomposition to learn the oriented edges where the reconstruction problem need 

not be solved under a regularization framework, resulting in a much faster solution. 
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This motivated us to use the contourlet transform [32], which is capable of catching 

the smoothness along contours, naturally. 

 
3.2.1. Contourlet Transform: 
The contourlet transform retains the multi-scale and time-frequency localization 

properties of wavelets. In addition, it also offers a high degree of directionality. Thus 

they are capable of capturing the geometrical smoothness of the contour along any 

possible direction. The contourlet transform is implemented in two stages: the sub-

band (spectral) decomposition stage and the directional decomposition stage. For the 

sub-band decomposition stage we use the Laplacian pyramid where the 

decomposition at each step generates a sampled low-pass version of the original and 

the difference between the original image and the prediction. The directional filter 

bank (DFB) is efficiently implemented by using an m-level binary tree decomposition 

that leads to 2m sub-bands with wedge-shaped frequency partitioning. Combining the 

Laplacian pyramid and the directional filter bank yields the discrete contourlet 

transform. 

3.2.2. Learning of Edge Primitives: 
We plan to learn the mapping of an LR edge (called edge primitive here) to its HR 

representation locally from the training data set during up sampling. Since wavelets 

are known to capture the high frequency details very well locally, we propose to use 

contourlets to learn this mapping. We use a contourlet based learning technique 

where the HR edge primitives are learned from the HR data set locally with the 

assumption that a primitive edge element in the HR image is localized to an 8x8 pixel 

area, and the corresponding edge elements over a 4x4 pixel area in the LR image. 

Each local region is learned independently from the HR data set. 

3.2.3. Learning the Contourlet Coefficients: 
Given a low-resolution input image y, we perform a contourlet decomposition 

consisting of two pyramidal levels and each pyramidal level is then decomposed into 

four directional sub-bands which yield the decomposition. A three level 

decomposition is performed on all the high resolution database images and each 

pyramidal level is decomposed into four directional sub-bands. Our idea is to learn 

the contourlet coefficients in the four directional sub-bands corresponding to the 

finest level for the given low resolution image. After learning, we have a three level 

decomposition for the input image, i.e., the original low level decomposition 

coefficients plus the learned coefficients at the finer scale. The inverse transform of 

this will yield the high resolution equivalent of the low resolution input. 
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Here the low-resolution image is of size MxM pixels. Considering an up sampling 

factor of 2, the high-resolution image, now has a size of 2Mx2M pixels. For each 

coefficient in the sub-bands I - IV and the corresponding 2Mx2M blocks in the sub-

bands V- VIII we extrapolate a block of 4x4 contourlet coefficients in each of the sub-

bands IX, X, XI and XII [refer Fig. 5]. 
0 0 

I I II II 
II IIV II IIV 

V VI V VI

VII VIII VII VIII 

IX X IX X 

XI XII XI XII 

                             (a) (b) 

Fig. 5 Illustration of learning contourlet coefficients at a finer scale: (a) A low-resolution image 

with two-level decomposition. Coefficients in dotted sub-bands are to be learnt. (b) A 

representative high-resolution training set in contourlet domain with three-level 

decomposition. 
In order to do this we exploit the idea from zero tree concepts, i.e., in a 

multiresolution system, every coefficient at a given scale can be related to a set of 

coefficients at the next coarser scale of similar orientation. Using this idea we follow 

the minimum absolute difference (MAD) criterion to estimate the contourlet 

coefficients. We take the absolute difference locally between the contourlet 

coefficients in the low resolution image and the corresponding coefficients in each of 

the high resolution training images. This is repeated for each coefficient in sub-bands 

I, II, III and IV of the low resolution image. In effect, we find the best matching 8x8 

edge primitive from the training data for a given 4x4 representation in the low-

resolution image through contourlet expansion. 

In our experiments we used ``9-7" biorthogonal filters for the Laplacian pyramid 

because they are close to being orthogonal and also because of their linear phase 

characteristics. For the directional filter banks we used the “23-45" biorthogonal 

quincunx filters and modulate them to obtain the biorthogonal fan filters. These filters 

are also nearly orthogonal and have linear phase response. The complete learning-

based resolution enhancement procedure is summarized below in terms of the steps 

involved. 
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3.2.4. Sample Results: 
Fig.6(c) shows the result of the corresponding experiments conducted on an LR 

textured image shown in Fig.6 (a). The super-resolved image using the proposed 

approach is observed to be much sharper compared to the results of bicubic 

interpolation. In particular, the edges are better preserved in the super-resolved 

image using contourlet learning than the bicubic interpolated image where it appears 

to be more blurred. The super-resolved image compared very favorably to the 

original high-resolution image shown in Fig.6 (b). For all these experiments the 

database of HR images comprised of a collection of 64 arbitrary images of both 

indoor and outdoor scenes.                               

                                
 (a)               (b)          (c)     

Fig. 6 (a) A low resolution texture image, (b) corresponding HR image, (c) the super-resolved 

image using the contourlet learning. 

Now we show the results of the experiments performed on a LR image where the 

aliasing is very high. The purpose of this experiment is to demonstrate the behavior 

of the proposed method when severe aliasing is present in the LR data. Such a low 

resolution image is shown in Fig. 7(a) and the corresponding bicubic interpolated 

image is shown in Fig. 7(b).  

                                                       
    (a)                (b)       (c)     

  
Fig. 7 (a) a low resolution image with prominent aliasing, (b) bicubic interpolation of low 

resolution image, (c) The super-resolved image using contourlet learning. 

 

Note that the stripes on the scarf are aliased. The super-resolved image using the 

proposed approach is shown in Fig. 7(c). The super-resolved image appears to be 
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much sharper than the bicubic interpolated one. However, the proposed method was 

unable to remove the aliasing effect. 
 

3.3. Super resolution using Papoulis-Gerchberg method 
3.3.1. Papoulis-Gerchberg method 
This method of super-resolution is based on the work done independently by 

Papoulis [33] and Gerchberg [34]. The motivation for their work was signal 

extrapolation from only a part of the original signal i.e. determination of the transform 

                                                                  … (4) ( ) ( )
∞

∞
∫

+
-jwt

-
dtF w = f t   e

of a signal f(t) given a finite segment 

                  ( ) ( ) ( ) ( )

                                                     

 ≤



1,   t T
g t = f t PT t ,       where  PT t =

0,   t > T                    … (5) 

The signal extrapolation is carried out by the method of alternate projections [35], 

iterating alternately between time and spectral domains. The signal g(t) is low-pass 

filtered by truncating its Fourier transform outside the interval [-σ; σ], assuming σ is 

the signal bandwidth of f(t). In the nth iteration this can be expressed as 

                 ( ) ( ) ( ) ( )
 ≤



n n-1 σ σ
1,   w σ

F w = G w P w ,  P w =
0,   w > σ

                … (6) 

The inverse function of Fn(ω) is then computed as fn(t). This results in a reduction of 

the error signal Іf(t) – fn(t)І2 outside the known segment of the signal. This follows 

from Parseval's theorem. However, the signal fn(t) does not match the observed 

signal g(t) in the region [-T, T]. This part of the signal is then restored to the original 

known segment forming the function gn(t) for the next iteration. 

                  ( ) ( ) ( ) ( ) ( ) ( )
( )

 ≤    
n n n

n

g t ,   t T
g t = f t + f t - f t PT t =

f t ,   t > T
                 … (7) 

This process is then iterated with the new gn(t). In each iteration the mean square 

error of the extrapolated signal is reduced two folds. Hence with successive iterations 

the generated extrapolated signal approaches the desired signal f(t). Convergence of 

the method is guaranteed and is shown in [33]. However, the process ideally requires 

an infinite number of iterations. If we stop after r iterations, the reconstructed signal is 

given by fr(t) instead of f(t). Also, in practical cases the measured data g (t) = g0(t) will 

contain error. The propagation of this measurement error can be controlled by early 

termination of the iterative process [34, 36]. The process also assumes the signal f(t) 

 15



to be band limited, but it is found that the method works reasonably well for signals 

with sufficiently low energy in their higher frequency components. 

3.3.2. Application to Super-resolution (SR) 
The low-resolution image is projected on a higher dimensional grid (taking the factor 

of zoom into consideration) where the values of some pixels are known and some 

are unknown. The unknown pixel values are initially set to zero. In the next step, the 

image is taken to its frequency domain and the higher frequencies are taken to zero. 

This is low-pass filtering the image. After this step, the unknown pixels will have 

some values. But, the known pixel values have changed as a result of the filtering. In 

the next step, these values are set back to their original values, creating the higher 

frequency components. The whole process is repeated. Fig.8 compares output of the 

method after 50 iterations with that of the bicubic interpolation. 

 

                                
                          (a)            (b)        (c) 

 Fig. 8 (a) Low resolution Lena image, (b) bicubic interpolated image, (c) super-resolved 

image by PG method. 

 

Though the method is quite fast it has some drawbacks. It relies heavily on the fact 

that the measured (known) pixel values are the values that are to be obtained in the 

reconstructed high-resolution image. In other words, it assumes that the low-

resolution images are down-sampled versions of the expected high-resolution image. 

Hence, it is not able to compensate effectively for blur and noisy measurement of 

data. We overcome this drawback by introducing a different constraint enforcing part. 

We want to enforce that the super-resolved image obtained after every iteration of 

method confirms to the input low resolution image. To do this we introduced a back 

projection part within the PG method. Iterative back projection has been used in 

image super-resolution by Irani and Peleg [2]. Here we deal with case when only 

single LR image is available. In our model after every iteration of the PG model we 

calculate the error between the LR image and simulated LR image formed by 
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applying the known decimation model to the obtained SR image, mathematically, the 

error e can be expressed as  i

ii Dzye −=                … (8) 

Where y is the input LR image, D is the decimation matrix that we assume to be 

known to us and zi is the obtained SR image after the ith iteration of the method. We 

then compensate for the error in the obtained SR image by adding the error for each 

pixel of the simulated LR image to the corresponding block of pixels in the obtained 

SR image. We then proceed with next iteration. It may be noted here that due to this 

error compensation in blocks certain blockiness will be introduced to the SR image 

obtained at this point. However, this is then taken care of in the low-pass filtering part 

of next iteration. The algorithm terminates when the error is small enough. This 

method may thus seem as a process where we attempt to reverse the process of 

averaging as shown in fig.9 below.      

                                       
     (a)          (b) 

                        
         (c)          (d) 

Fig. 9 super-resolution of Lena Image using PG method with deblurring: (a)Low resolution 

Lena image formed by averaging and downsampling of a high resolution image, (b)2x 

zoomed image using bicubic interpolation, (c)super-resolved image formed using the 

standard PG method, (d) super-resolved image formed using PG method with deblurring. 

 

3.4 Edge Model Based Super-resolution 
It has been shown in Edge-model based representation of Laplacian subbands that 

one can very efficiently model LR edges and synthesize their corresponding HR  

representation using a Laplacian Pyramid [37] instead of using contourlet as 
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explained in section 3.2. We refrain from reproducing them here for the purpose of 

brevity. The corresponding algorithm has been implemented and the results of 

application on images of material surfaces are given in next section. 

 
3.5 Total variation based approach 
The image formation model for the low resolution image from a high resolution image 

is given as  

y(x) = d(x)(h ∗ z) + n(x)             … (9) 

Here, d(x) is the decimation matrix, h is the blur point spread function, z is the high 

resolution image and n(x) is the noise function. Given an approximation u to the high 

resolution image z, and the image u0 which is the upsampled version of the observed 

low resolution image, the residual error is given as 

r(x) = u0(x) - (h ∗ u)(x)            … (10) 

Based on the error function, an objective function can be formulated minimization of 

which gives the high resolution image. The objective function is given as 

E(u) = ∫  ((r(x))2 + α|∇u|)dx          …  (11) 

The solution for super-resolution from a single image can be given in terms of the 

following objective function. Here the first term is the data term and the second term 

is the L1 (TV) regularization term. The choice of TV norm has found favor in the 

image restoration community because it allows discontinuities in its solution. As 

opposed to the L2 norm it does not smoothen the image across edges. Our 

motivation for the use of TV based regularization stems from its edge preserving 

property which is vital for super-resolution. However, the current formulation of data 

term and regularization term results in a solution that preserves strong edges, 

however, the finer details of texture are lost in the solution of the above objective 

function. This can be easily understood by considering the following argument. If 

there exists a weak edge (the magnitude of gradient is small), then the regularization 

constraint gives it a low weight. The data fidelity constraint, due to the averaging 

nature of the blurring kernel, would also not enforce the preservation of the edge. In 

the iterative energy minimization approach these finer details are therefore lost. In 

order to preserve texture details and finer details it is required to consider an 

additional data fidelity constraint. This constraint we formulate as a correlation 

constraint over various sub-bands of an image. The objective function we use is then  

( )
 

∇  
 

∑∫ ∫ ∫
k

2~2
0 k k 0kΩ Ω Ω

k

1 1J(u)= u  dxdy + α u* h - u dxdy + λ U -U dvdw2 2          …(12) 
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Where, u denotes the HR restored image, h is the blurring kernel, u0 is the 

interpolated version of the input LR image, U
~

k denotes the kth spectral subband of 

the estimated LR image formed under the known decimation model in the Fourier 

domain, U0k is the Kth sub-band of the input LR image and  is the corresponding 

weighing term for the regularizer. Thus an interpolation of the LR observation serves 

as the initial estimate of the HR image. 

κλ

3.5.1 Implementation Details: 
The objective function given in equation (12) is minimized by an iterative gradient 

descent technique as done commonly in the literature [38]. The corresponding Euler 

Lagrange equation for the objective function is given by  
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The resultant iterative updation process is given by 
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Where D-1 is the upsampling process and ℑ -1 implies the inverse Fourier transform. 

Under this framework, it then becomes possible to assign different weights ( ) to 

existing error terms in different bands. As opposed to other schemes that we have 

discussed before, the additional constraint term is calculated and weighed in the 

spectral domain. The inverse Fourier transform is then applied and finally it is scaled 

to match the high resolution image dimensions.  

κλ

It may be argued here that it follows from Parseval's theorem that calculating error 

power in the spatial domain and the frequency domain should be equivalent. 

However, the operation in the spectral domain makes it easy to split an image into 

separable components based on spectral contribution. The number of spectral bands 

k does affect the quality of super-resolution. In general, the higher the number of 

spectral bands, more the flexibility for preserving details. 

We have experimentally tried the method with k= 2 and 4 spectral bands. Under the 

absence of noise, we use a higher weight factor ( ) for the higher spectral bands 

which capture the finer details and the edges of the image. Using such a model it is 

then possible for us to enforce that more importance is given to data fidelity at the 

κλ
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edges. This should ensure that the image that is formed is a sharper super-resolved 

image of the input LR observation under the known image decimation model. On the 

other hand, noise in an image can be expected to be captured in the higher 

frequency sub-bands, which necessitates the use of smaller weights for higher sub-

bands when the input image is noisy. An appropriate choice of  would ensure a 

proper trade-off between the sharpness of the super-resolved image and the 

accentuation of the noise present. We have experimented with both noisy and 

noiseless cases and the results are discussed in following section. An interesting 

enhancement to the work is when the parameter is related to the concept of wiener 

filter. Since the wiener filter is an optimal linear filter, the choice of  based on his 

filter allows us to clean the presence of noise in the data. The details of the 

procedure are given as an appendix. 

κλ

κλ

κλ

 
3.5.2 Sample Results 
As shown in Fig.10 (b) &(c), we can see that the total variational deblurring 

performed on the bicubic reconstruction sharpens the image at edges but at the cost 

of loss of the texture. This is not the case for Fig.10 (d) & (e). This can be noted from 

the presence of texture in the hat and the hair, even though the overall reconstruction 

remains sharp. This is specifically what we wanted to achieve by our method. 

              
 Fig.10 SR using proposed TV based approach for 2x zoom: (a) Input LR image, (b) bicubic 

interpolated image used as the initial estimate, (c) TV based deblurring of (b), (d)super-
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resolution using modified TV based approach using only 2 bands, (e) reconstruction using 4 

bands. 

 
4. Experiments on Super-Resolving Images of Material Surfaces 
We have used material surface images provided by AFRL/ML. These were metal 

alloy microscopic and AFM images of a coin as shown in fig.11 below.  

                        
(a)                                                             (b) 

Fig.11: Material surface image datasets: (a) metal surface image and (b) coin image. 

 

We have named material surface image shown in fig.11(a) as data set 1 and coin 

image shown in fig.11(b) as data set 2.The super-resolution techniques described in 

section 3, have been applied on a family of images made available from the AFRL/ML 

partners. The data set 1 images are of size: 512x512 pixels and the size of data set 2 

images are of 800x800 pixels. In addition, a single high resolution scan of a material 

surface image of size 4kx4k pixels was also used to generate a family of LR images.  

 

4.1. Experiment on data set 1: 
Now we show the results of proposed techniques on data set 1. For verification 

purpose we have downsampled the high resolution (HR) image and downsampling 

was achieved by skipping pixels. Thus, a downsample by a factor of 2 would involve 

skipping alternate columns and alternate rows concurrently.  

We have used HR images of size 512x512 and formed low resolution (LR) image of 

size 256x256 as shown in fig.12 (b) below. This LR was processed using various 

super-resolution techniques.  
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            (a) HR      (b) LR 

        
                (c) Bicubic                  (d) PG  

                
                  (e) Edge Model       (f) TV  
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(g) Contourlet 

Fig.12. Super-resolution of material surface data set 1: (a) Original HR image of size 512x512 

used for comparison, (b) LR image of size 256x256 formed by downsampling the image (a) 

by factor 2 and used as input, (c) bicubic interpolated image, (d) super-resolved by PG 

method, (e) super-solved image using edge based model, (f) super-resolved image using total 

variation approach, (g) super-resolved by contourlet method.   

For enhanced visual interpretation of super-resolved images, we cropped a specific 

region as shown in fig.12 (a) for each super-resolved image. These images are 

shown below. 
 

                               
                (a) HR            (b) Bicubic 

                                
           (c) PG               (d) Edge 
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                         (e) TV          (f) Contourlet       

Fig.13 (a) original HR image (b) bicubic interpolated image which is quite blurred, (c) Image 

super-resolved by PG method looks quite smooth,(d) Image super-resolved by edge model 

appear sharper at edges ,(e) total variation based SR image, (f) Image processed by 

contourlet approach appears to be superior. 

 

Fig.13 (b) indicates that bicubic interpolation does not yield good result as it produces 

in blurring the edges. LR image was also processed by PG algorithm which yields 

fairly better result. It filtered out the high frequency noise and offers a smooth image 

when processed for 50 iterations. Fig.13 (d) clearly depicts the strong edges present 

in the super-resolved Image. An analysis indicates that this edge based method does 

the best for isolated edges. In regions having dense edges, the model seems to 

perform poorly and leading to ghosting in the generated image.  

For total variation method, we take a single LR image and the initial starting image as 

the bicubic interpolation of the input LR image. The image at every iteration of the 

restoration process is decomposed into two bands and based on the theory 

presented above we apply a higher weight to higher frequency component of the 

image. For the results shown here using a decomposition into only 2 bands, we use 

the values λ1 = 0.6 and λ2 = 0.8 and run for 10 iterations. A higher index of λ value 

implies a higher frequency band. In Fig.13 (e) we can see that the total variational 

deblurring performed on the bicubic reconstruction sharpens the image. It can be 

noted that the overall reconstruction remains sharp. This is specifically what we 

wanted to achieve by our method. 

Fig.13 (f) shows the results of the contourlet approach carried out on an LR image 

shown in Fig.13 (b). For this method we have used 64 images as sample database, 

all these images were material surface images. The super-resolved image using the 

proposed approach seems to be much sharper compared to the results of bicubic 

interpolation. In particular, the edges are better preserved in the super-resolved 

image using contourlet learning than the bicubic interpolated image where it appears 

to be more blurred. The super-resolved image compared very favorably to the 

original high-resolution image. 
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4.2. Experiment on data set 2: 
We applied all proposed techniques on data set 2. Fig.14 (a) shows the original high 

resolution image used to judge the efficacy of various proposed techniques. We have 

used HR images of size 800x800 and formed low resolution (LR) image of size 

400x400.Fig.14 (b) is the downsampled LR image of fig.14 (a). This LR image was 

processed by various super-resolution methods.           

            
                          (a) HR                        (b) LR 

              
           (c) Bicubic     (d) PG 

 25



               
                                 (e) Edge Model       (f) TV 

 

 
(g) Contourlet 

Fig.14. Super-resolution of data set 2:(a) original HR image of size 800x800 used for 

comparison, (b) LR image of size 400x400 formed by downsampling the image (a), (c) bicubic 

interpolated image of (b), (d) super-resolved image of (b) by PG method, (e) super-solved 

image of (b) using edge based model, (f) super-resolved image of (b) using total variation 

approach, (g) super-resolved by contourlet learning method. 

 

To analyze at the smallest details of image, we have cropped all the images for 

different regions as marked on in fig.14 (a).  
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                         (a) HR       (b) Bicubic 

                               
               (c) PG                              (d) Edge model 

 

                      
               (e) TV                              (f) Contourlet 

Fig.15: Cropped center part of the image in fig.14: (a) original HR image, (b) bicubic 

interpolated image which is quite blurred, (c) Image super-resolved by PG method shows 

lines very clearly compared to previous image, (d) Results by edge based model yields many 

spurious edges, (e) Image super-resolved by TV method consists of more texture details than 

other methods, (f) Super-resolution by contourlet approach is better than (e) but inferior to (e). 

 

Fig.15 (b) indicates that bicubic interpolation does not yield a good result as it 

produces a blurred image. LR image was also processed by Papoulis-Gerchberg 

algorithm as shown in fig.15 (c) The PG method produces fairly good details about 

coin surface, still it is not satisfactory.  
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For Total variation based experiment we take a single LR image and the initial 

starting image as the bicubic interpolation of the input LR image for total variation. 

The image at every iteration of the restoration process is decomposed into two bands 

and processed as discussed in previous subsection. As shown in fig.15 (e) it can be 

noted that the overall reconstruction remains sharp. As there are no sharp edges 

present in the original image, the edge model does not deliver a good result as 

shown in fig.15 (d).   

Fig.15 (f) shows the processed image by contourlet approach, where 64 such 

arbitrary HR coin images are used as the HR training data set. However, the 

corresponding reconstruction is far from being satisfactory. 
 

                            
                              (a) HR                       (b) Bicubic   

                                     
                                 (c) PG       (d) Edge model 

                               
                                 (e) TV          (f) Contourlet 
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Fig.16: Cropped upper right part of the image in fig.14: (a) original HR image, (b) bicubic 

interpolated image which is quite blurred, (c) Image super-resolved by PG method looks quite 

smoother than others, (d) Results by edge based model yields many spurious edges, (e) 

Image super-resolved by TV method consists of more texture details than other methods, (f) 

Super-resolution by contourlet approach is better than (e) but inferior to (e). 

 
5. Error Analysis:        
Image reconstruction error measurement techniques are used to quantify the quality 

of reconstruction. Since in this case the original high-resolution image is known, the 

peak signal to noise ratio (PSNR) can be calculated between original HR image and 

proposed super-resolved image. 

PSNR is defined via mean squared error (MSE) between the original and super-

resolved image of size m x n.                                 

                                ( ) ( )∑ ∑
m-1 n-1 ^

i=0 j=0

2
1MSE = Z i, j - Z i, jmn                            … (16) 

where 
^
Z is super-resolved image, Z is the original image. Now PSNR is defined as, 

                ( )2
10

255PSNR = 10log dBMSE            … (17) 

where 255 is the maximum possible value of a pixel for 8-bit representation. We have 

calculated the PSNR for all proposed techniques and it summarized in the table  

below: 

        Table 1 shows PSNR for Dataset 1and 2 for various super-resolution techniques. 

Sr. No. Method Used PSNR for data 
set 1 

PSNR for data 
set 2 

1 Bicubic Upsampling 24.51 27.17 

2 PG Method 31.99 30.07 

3 Edge Model Based Method 22.76 21.99 

4 Total Variation Approach 22.88 25.66 

5 Contourlet Approach 30.76 26.66 

As shown in the Table1above, PSNR of PG method for the metallic surface dataset 1 

is 31.99dB, and that of the bicubic interpolation method inferior by 7.48dB. Contourlet 

learning produces a very good PSNR of 30.76dB for the data set1. For data set 2 

also, the PG method yields a better PSNR compared with other methods. The above 

PSNR values correspond to the input images shown in Figures 12 and 14 only.  

 

 29



Dataset1 images Bicubic PG Edge TV Contourlet 

1 24.510 31.990 22.760 22.880 31.093 

2 24.740 32.010 23.022 23.123 30.932 

3 24.600 31.767 22.798 23.001 30.728 

4 24.580 31.846 22.698 22.911 30.729 

5 24.792 31.867 22.773 23.149 30.740 

6 24.722 31.972 23.000 23.085 30.747 

7 24.659 31.880 22.965 23.059 30.736 

8 24.666 31.799 22.862 23.033 30.828 

9 24.605 31.942 22.939 22.998 30.844 

10 24.574 31.865 22.842 22.987 30.754 

11 24.580 31.809 22.864 22.970 30.617 

12 24.688 31.863 22.946 23.068 30.705 

13 24.564 31.844 22.769 22.956 30.655 

14  24.525 31.676 22.792 22.913 30.670 

15 24.657 31.827 22.872 23.036 30.750 

   Table 2 shows PSNR values for dataset1 super-resolved images (in dB).  
 

Dataset2 Images Bicubic PG Edge TV Contourlet 

1 23.225 25.168 17.953 22.115 24.742 

2 21.544 22.980 16.324 20.548 22.912 

3 28.103 32.400 24.767 26.757 29.487 

4 34.059 37.542 31.808 32.328 31.821 

5 23.820 26.923 18.900 22.640 25.530 

6 33.137 36.755 29.914 31.774 31.493 

7 29.552 36.028 27.382 27.916 30.810 

8 31.947 34.512 29.399 30.180 30.968 

9 17.940 18.702 12.657 17.227 18.378 

10 26.923 29.954 22.215 25.465 28.801 

11 27.776 32.303 24.144 26.255 29.840 

12 20.282 20.935 14.836 19.409 21.060 

13 24.123 25.955 18.886 22.957 25.615 

14 26.772 30.715 22.057 25.171 28.908 

15 26.818 30.148 21.788 25.334 28.969 

     Table 3 shows PSNR values for dataset2 super-resolved image (in dB).  
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 Since we had access to more data (sample images of material surfaces given to us), 

we analyzed a number of them and produce the corresponding PSNR figures 

achieved for all these methods in Tables 3 and 4. From Table 2 we notice that the 

PSNR values for images belonging to category 1 (see Fig 11(a)), are very consistent 

in all cases. However, the same cannot be said about the results obtained for the 

images belonging to category 2 (see Fig 11(b)), suggesting certain non-robustness of 

the proposed method. Notwithstanding above, we do see from Table 3 that the PG 

method provide a reasonable level of accuracy in most cases. However, it must be 

mentioned that PSNR is not necessarily a good measure of quantifying the visual 

quality of reconstruction in case of image Super-Resolution [39] as the measure is 

heavily biased towards the measuring the contributions from low frequency 

components. 
The performance analysis of the super-resolution techniques is usually estimated by 

calculating absolute difference between original and super-resolved image. A well 

designed algorithm should result in a disparity which is essentially made of white 

noise. At the very minimum, there should be no pattern in the disparity map which 

correlates with the output or the input. To visually inspect if these characteristics are 

satisfied, we have chosen to use a hybrid technique comprised of gray-scale 

modification and pseudo coloring. Instead of showing the errors in normal range, we 

emphasized the range by using formula, 

                                       ( ) ( )
( )

 

 

ror = max ×
max

orig - SR
orig - SR

orig - SR er            … (18) 

Where orig is the original HR image, SR is the super-resolved image. The gray-scale 

rescaling will give more emphasis for pixels where the error is low, and de-

emphasize pixels where the disparity is higher. In essence, this is a histogram 

equalization strategy for images whose grayscale distribution is laplacian, as is the 

case with most disparity images.                       

                                                
Fig.17: Illustration of how the lower range of error is emphasized for enhanced visualization of 

the absolute error between the original high resolution image and the super-resolved results. 

1

diff

Max (diff)  

diff2

0 Actual 
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In figure 18, we see that the highest errors occur in short stretches of curves 

which resemble the boundaries in the original image. Similar observations can be 

made about 18c and 18d. The PG method, however, produces acceptable low errors, 

albeit with a pattern that resembles with boundaries of the high resolution image. It 

indicates that higher frequency spectral components could still be improved, by 

increasing the iteration count, albeit at the risk of affecting the location and 

sporadicity of large disparities across the image. Especially if the point-spread 

function (PSF) of the diffraction limited imaging source is known precisely, it will 

result in better choices of parameters involved in running the PG method. On the 

other hand, figure 19e indicates that contourlet approach is equally suitable for this 

type of data, when applied on the cropped images. Figures 21, 22 and 23 depict the 

disparity data for the coin-data images. The PG method produces disparity that is 

less number of pixels with highest error values, and that too without a pattern. 
 

 

 
(a) 

   
          (b)            (c) 

 32



 
         (d)                           (e) 

 

Fig. 19 Error images of super-resolution techniques shown in fig.12: (a) bicubic interpolated 

error image, (b) super-resolved by PG method, (c) Edge based model, (d) Total variation 

approach,(e) contourlet approach. 

 
(a) 

   
       (b)      (c) 
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    (d)      (e)     
Fig. 20 Error images of super-resolution techniques shown in fig.13: (a) bicubic interpolated 

image,(b) PG method, (c)edge based model, (d) total variation method, (e)contourlet 

approach. 

  
        (a)       (b) 
          

 
(c) (d) 
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(e) 

Fig. 21 Error images of super-resolution techniques shown in fig.14: (a) bicubic interpolated 

error image, (b) super-resolved by PG method, (c) Edge based model, (d) Total variation app.  
(e) Contourlet approach. 

 

 
(a) 

 
                    (b)                         (c) 
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                (d)                                                                        (e) 
Fig.22 Error images of super-resolution techniques shown in fig.15 :(a) bicubic interpolated 

image, (b) PG method, (c)edge based model, (d) total variation method, (e)contourlet 

approach. 

 

                                         
      (a) 

 
   (b)           (c) 
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          (d)             (e) 

Fig.23 Error images of super-resolution techniques shown in fig.16 :(a) bicubic interpolated 

image, (b) PG method, (c)edge based model, (d) total variation method, (e)contourlet 

approach. 

 

 

 

 

 

 
6. Conclusions: 
 We have explored various methods for super resolution of material surface images 

as well as other images in the report. Based on observations we recommend the 

usage of either the contourlet based method or TV based approach for super-

resolving optical microscope data. To super-resolve the AFM data, we recommend 

the usage of either TV-based approach or PG method. 
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